
Custodia Security

Noya Mitigation Review
Conducted By: Ali Kalout, Ali Shehab

Contents
1. Disclaimer 3
2. Introduction 3
3. About Noya 3
4. Risk Classification 4

4.1. Impact 4
4.2. Likelihood 4
4.3. Action required for severity levels 5

5. Security Assessment Summary 5
6. Executive Summary 5
7. Findings 11

7.1. Critical Findings 11
[C-01] Users can pass zero address to deposit, leading to deposited funds being
stuck forever 11
[C-02] adjustIsolationModeAssetAsCollateral and changeEMode are missing
onlyManager modifier, allowing any user to call them 12

7.2. High Findings 14
[H-01] AccountingManager::executeWithdraw is sending the wrong base token
amount to withdrawErrorsHandler 14
[H-02] Invalid TVL calculation in MorphoBlueConnector::_getPositionTVL 16
[H-03] Invalid TVL calculation in BalancerConnector::_getPositionTVL 17

7.3. MediumFindings 19
[M-01] getValueFromChainlinkFeed will result in stale prices 19

7.4. Low Findings 20
[L-01] Withdrawal errors are not cleared after being handled 20

1. Disclaimer

A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise,
aiming to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of Noya's smart contract
following the resolution of issues identified in their Code4rena audit,
ensuring the proper implementation of fixes.

3. About Noya

NOYA represents a paradigm shift in decentralized finance, introducing a
protocol that empowers AI agents to control liquidity across multiple chains
with unparalleled trustlessness and precision. Engineered with a
foundational composable system, NOYA built from the ground up a secure
private keeper network, a trustless AI-compatible oracle, and a competitive
environment for AI architects alongside strategy managers.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

● High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

● Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

● Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

● High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost..

● Medium: The attack vector is conditionally incentivized but still
relatively likely.

● Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.

4.3. Action required for severity levels

● Critical: Must fix as soon as possible
● High: Must fix
● Medium: Should fix
● Low: Could fix

5. Security Assessment Summary

Repository: Noya-ai/noya-vault-contracts
Commit: 8279e96b8d276f52f96761c8d5ac173715da4e00

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
Noya to review Noya. In this period a total of Y issues were uncovered.

Findings Count

Severity Amount

Critical 2

High 3

Medium 1

Low 1

Total Finding 7

Summary of C4 Fixes

ID Title Severity Status

1426 executeWithdraw may be blocked if any of the
users are blacklisted from the baseToken

High Resolved

1224 AccountingManager::resetMiddle will not
behave as expected

High Resolved

1363 Loss of funds in
PendleConnector.depositIntoMarket()

High Resolved

1339 PendleConnector incorrectly sends the
redeemed PT tokens to the market instead of the
connect

High Resolved

677 Decreasing a position in PendleConnector will
remove it even if there's still a stake at Penpie

High Resolved

350 Invalid calculation of position TVL in Pendle
connector

High Resolved

1438 Base tokens like USDT, USDC having different
decimals on different chains can have their TVL
updated incorrectly

High Resolved

1430 NoyaValueOracle.getValue returns an incorrect
price when a multi-token route is used

High Resolved

1018 Invalid calculation of position TVL in Pendle
connector

High Resolved

991 PendleConnector.sol::supply doesn't pass a valid
slippance protection min

High Resolved

1033 BalancerConnector::_getPositionTVL is calculated
incorrectly

High Resolved

1021 BalancerConnector has incorrect implementation of
totalSupply, positionTVL and total TVL will be invalid

High Resolved

938 SiloConnector _getPositionTVL miscalculate the
TVL position

High Resolved

https://github.com/code-423n4/2024-04-noya-findings/issues/1426
https://github.com/code-423n4/2024-04-noya-findings/issues/1224
https://github.com/code-423n4/2024-04-noya-findings/issues/1363
https://github.com/code-423n4/2024-04-noya-findings/issues/1339
https://github.com/code-423n4/2024-04-noya-findings/issues/677
https://github.com/code-423n4/2024-04-noya-findings/issues/350
https://github.com/code-423n4/2024-04-noya-findings/issues/1438
https://github.com/code-423n4/2024-04-noya-findings/issues/1430
https://github.com/code-423n4/2024-04-noya-findings/issues/1018
https://github.com/code-423n4/2024-04-noya-findings/issues/991
https://github.com/code-423n4/2024-04-noya-findings/issues/1033
https://github.com/code-423n4/2024-04-noya-findings/issues/1021
https://github.com/code-423n4/2024-04-noya-findings/issues/938

926 It is possible to open insolvent position is Silo
connector, due to missing check in borrow function

High Resolved

778 Numerous errors when calculating the TVL for the
MorphoBlue connector

High Resolved

708 _getPositionTVL of UNIv3Connector wrongly
assumes ownership of all liquidity of the provided
ticks inside positionManager

High Resolved

1093 Registry.sol#updateHoldingPosition
remove position logic is incorrect: should use
ownerConnector instead of calculatorConnector
when calculating holdingPositionId

High Resolved

1522 AccountingManager contract's previewDeposit,
previewMint, previewWithdraw, and
previewRedeem functions are not compliant with
EIP-4626 standard

Medium Resolved

1334 AccountingManager has no correct implementations
of the core ERC-4626 functions deposit, mint,
withdraw and redeem

Medium Resolved

1330 Attacker can increase the length of
withdrawQueue by withdrawing 0 amount of
tokens frequently

Medium Resolved

1278 Withdrawals in AccountManager are prone to DOS
attacks

Medium Resolved

854 depositQueue.queue in AccountingManager
can be flooded causing a DoS

Medium Resolved

1097 AccountingManager#totalWithdrawnAmount
should reflect tokens actually transferred to users,
instead of expected transfers

Medium Resolved

1329 totalAssets(), and thus convertToShares()
and convertToAssets(), may revert, in violation
of ERC-4626

Medium Resolved

1488 Incorrect modifier condition Medium Resolved

https://github.com/code-423n4/2024-04-noya-findings/issues/926
https://github.com/code-423n4/2024-04-noya-findings/issues/778
https://github.com/code-423n4/2024-04-noya-findings/issues/708
https://github.com/code-423n4/2024-04-noya-findings/issues/1093
https://github.com/code-423n4/2024-04-noya-findings/issues/1522
https://github.com/code-423n4/2024-04-noya-findings/issues/1334
https://github.com/code-423n4/2024-04-noya-findings/issues/1330
https://github.com/code-423n4/2024-04-noya-findings/issues/1278
https://github.com/code-423n4/2024-04-noya-findings/issues/854
https://github.com/code-423n4/2024-04-noya-findings/issues/1097
https://github.com/code-423n4/2024-04-noya-findings/issues/1329
https://github.com/code-423n4/2024-04-noya-findings/issues/1488

1501 Stale price can be used in
getValueFromChainlinkFeed function

Medium Resolved

1415 Chainlink connector doesn’t check for the Min / Max
prices returned

Medium Resolved

917 Using the same heartbeat for multiple price feeds Medium Resolved

1428 Keepers does not implement EIP712 correctly on
multiple occasions

Medium Resolved

1298 The modifier onlyExistingRoute works
incorrectly

Medium Resolved

959 Dust donation might DOS all connectors to create
new holding positions, by preventing removing
existing holding positions

Medium Resolved

799 The watchers cannot perform their role and can't do
anything to intervene during bridging as stated by
the docs

Medium Resolved

1042 In the BalancerConnector, unclaimed rewards are
not included in the calculation of the connectors TVL

Medium Resolved

276 lzSend() forwards all of the contract balance as
the native gas fee but the excess won't be always
returned

Medium Resolved

1321 Lack of function to claim reward in AaveConnector Medium Resolved

1554 Extra rewards are not updated in curve connector
when harvestConvexRewards is called

Medium Resolved

1110 CurveConnector.sol#depositIntoConvexBo
oster does not keep track of TVL if stake ==
false

Medium Resolved

340 If a curve pool which CurveConnector uses is killed
the vault manager can't close the position leading to
loss of funds

Medium Resolved

581 Some connectors prevents repayment of a borrow
position if it doesn't leave the connector solvent or
above minimumHealthFactor

Medium Resolved

https://github.com/code-423n4/2024-04-noya-findings/issues/1501
https://github.com/code-423n4/2024-04-noya-findings/issues/1415
https://github.com/code-423n4/2024-04-noya-findings/issues/917
https://github.com/code-423n4/2024-04-noya-findings/issues/1428
https://github.com/code-423n4/2024-04-noya-findings/issues/1298
https://github.com/code-423n4/2024-04-noya-findings/issues/959
https://github.com/code-423n4/2024-04-noya-findings/issues/799
https://github.com/code-423n4/2024-04-noya-findings/issues/1402
https://github.com/code-423n4/2024-04-noya-findings/issues/276
https://github.com/code-423n4/2024-04-noya-findings/issues/1321
https://github.com/code-423n4/2024-04-noya-findings/issues/1554
https://github.com/code-423n4/2024-04-noya-findings/issues/1110
https://github.com/code-423n4/2024-04-noya-findings/issues/340
https://github.com/code-423n4/2024-04-noya-findings/issues/581

314 FullMath libabry is missing unchecked blocks,
leading to DOS protocol's TVL and
UniswapValueOracle

Medium Resolved

830 MorphoBlueConnector:withdraw withdraws supplied
tokens in a market order

Medium Resolved

https://github.com/code-423n4/2024-04-noya-findings/issues/314
https://github.com/code-423n4/2024-04-noya-findings/issues/830

Summary of Findings

ID Title Severity Status

[C-01] Users can pass zero address to deposit, leading to
deposited funds being stuck forever.

Critical Resolved

[C-02] adjustIsolationModeAssetAsCollateral
and changeEMode are missing onlyManager
modifier, allowing any user to call them

Critical Resolved

[H-01] AccountingManager::executeWithdraw is
sending the wrong base token amount to
withdrawErrorsHandler

High Resolved

[H-02] Invalid TVL calculation in
MorphoBlueConnector::_getPositionTVL

High Resolved

[H-03] Invalid TVL calculation in
BalancerConnector::_getPositionTVL

High Resolved

[M-01] getValueFromChainlinkFeed will result in stale
prices

Medium Resolved

[L-01] Withdrawal errors are not cleared after being
handled

Low Resolved

7. Findings

7.1. Critical Findings

[C-01] Users can pass zero address to deposit, leading to
deposited funds being stuck forever

Severity:
Critical

Description:
Users can call AccountingManager::deposit while passing a receiver address,
this receiver address later gets minted some shares corresponding to the amount of
tokens deposited. ERC4626/ERC20 reverts on minting to address 0, through the
following:

/**

* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it

from address(0).

* Relies on the `_update` mechanism

*

* Emits a {Transfer} event with `from` set to the zero address.

*

* NOTE: This function is not virtual, {_update} should be overridden instead.

*/

function _mint(address account, uint256 value) internal {

if (account == address(0)) {

revert ERC20InvalidReceiver(address(0));

}

_update(address(0), account, value);

}

At the same time, the protocol doesn't block users from calling deposit while passing
address(0), so later, when executeDeposit is called it'll always revert.

So all deposited funds of different users will get stuck forever.

Proof of Concept:

function test_DOSDepositQueue() public {

_dealWhale(USDC, alice, USDC_Whale, 1_000_000e6);

vm.startPrank(alice);

SafeERC20.forceApprove(

IERC20(USDC),

address(accountingManager),

type(uint256).max

);

accountingManager.deposit(address(0), 1e6, address(0));

vm.stopPrank();

vm.startPrank(owner);

accountingManager.calculateDepositShares(10);

vm.warp(block.timestamp + accountingManager.depositWaitingTime() + 1);

vm.expectRevert(

abi.encodeWithSelector(

IERC20Errors.ERC20InvalidReceiver.selector,

address(0)

)

);

accountingManager.executeDeposit(10, connector, "");

vm.stopPrank();

}

Recommendations:
Make sure to block users from passing the receiver (in
AccountingManager::deposit) as zero address.

[C-02] adjustIsolationModeAssetAsCollateral and
changeEMode are missing onlyManager modifier, allowing
any user to call them

Severity:
Critical

Description:
Aave connector allows the protocol manager to interact with the Aave protocol to
stake/borrow tokens, allowing them to earn yield. However, there are 2 functions
adjustIsolationModeAssetAsCollateral and changeEMode that are

permissionless. Allowing any user to change the connector's configuration on Aave,
affecting its opened positions.

Proof of Concept:
function testPermissionlessAaveFunctions() public {

address dummyUser = address(0x123);

uint256 _amount = 100 * 1e6;

_dealWhale(

baseToken,

address(connector),

address(0x1AB4973a48dc892Cd9971ECE8e01DcC7688f8F23),

_amount

);

vm.prank(owner);

connector.supply(USDC, _amount);

assertEq(IPool(aavePool).getUserEMode(address(connector)), 0);

vm.prank(dummyUser);

connector.changeEMode(1);

assertEq(IPool(aavePool).getUserEMode(address(connector)), 1);

vm.prank(dummyUser);

connector.adjustIsolationModeAssetAsCollateral(USDC, false);

vm.prank(owner);

vm.expectRevert(bytes("34")); // 'The collateral balance is 0'

connector.borrow(10e18, 2, DAI);

}

Recommendations:
Add onlyManager modifier to both adjustIsolationModeAssetAsCollateral
and changeEMode.

7.2. High Findings

[H-01] AccountingManager::executeWithdraw is sending
the wrong base token amount to withdrawErrorsHandler

Severity:
High

Description:
The protocol handles potential ERC20 transfer reverts by sending the amount to a
withdrawErrorsHandler in AccountingManager::executeWithdraw.
However, it is passing the wrong amount data.amount instead of
baseTokenAmount, which is the "current" value while having fees subtracted from it.

This will drain the accounting manager, as more tokens than intended will be sent to the
handler.

Proof of Concept:
function test_BlacklistReceiverWrongAmountSent() public {

vm.prank(owner);

accountingManager.setFees(5e4, 0, 0);

_dealWhale(USDC, alice, USDC_Whale, 1000e6);

RetrieveData[] memory retrieveData = new RetrieveData[](1);

retrieveData[0] = RetrieveData(

1e6,

address(connector),

abi.encode(1e6, hex"1232")

);

vm.startPrank(alice);

SafeERC20.forceApprove(

IERC20(USDC),

address(accountingManager),

type(uint256).max

);

accountingManager.deposit(alice, 100e6, address(0));

vm.stopPrank();

vm.startPrank(owner);

accountingManager.calculateDepositShares(10);

vm.warp(block.timestamp + accountingManager.depositWaitingTime() + 1);

accountingManager.executeDeposit(10, connector, "");

vm.stopPrank();

vm.prank(Blacklist_ERC20(USDC).blacklister());

Blacklist_ERC20(USDC).blacklist(alice);

assertEq(Blacklist_ERC20(USDC).isBlacklisted(alice), true);

vm.prank(alice);

accountingManager.withdraw(1e6, alice);

vm.startPrank(owner);

accountingManager.calculateWithdrawShares(10);

accountingManager.startCurrentWithdrawGroup();

accountingManager.retrieveTokensForWithdraw(

retrieveData,

address(0),

""

);

accountingManager.fulfillCurrentWithdrawGroup();

vm.warp(block.timestamp + accountingManager.withdrawWaitingTime() + 1);

vm.expectRevert(); // ERC20: transfer amount exceeds balance

accountingManager.executeWithdraw(10);

vm.stopPrank();

}

Recommendations:
In AccountingManager::executeWithdraw, replace:
baseToken.safeTransfer(address(withdrawErrorsHandler), data.amount);

with:
baseToken.safeTransfer(address(withdrawErrorsHandler), baseTokenAmount);

[H-02] Invalid TVL calculation in
MorphoBlueConnector::_getPositionTVL

Severity:
High

Description:
When calculating the TVL of a MorphoBlue position, the protocol manipulates the result
of convertCToL to represent the answer in the loan token’s decimals. However, this is
wrong because MorphoBlue already handles this in
https://github.com/morpho-org/morpho-blue/blob/main/src/interfaces/IOracle.sol.

This results in an inaccurate representation of the position’s TVL.

Proof of Concept:
function testInvalidTVLCalculation() public {

Id marketId = Id.wrap(

0xb323495f7e4148be5643a4ea4a8221eef163e4bccfdedc2a6f4696baacbc86cc

);

uint256 USDCamount = 1_000e6;

uint256 WETHamount = 1e18;

_dealWhale(USDC, address(connector), USDC_Whale, USDCamount);

_dealERC20(WSTETH, address(connector), WETHamount);

assertEq(accountingManager.TVL(), 0);

vm.prank(owner);

connector.supply(WETHamount, marketId, false);

assertEq(accountingManager.TVL(), 0);

}

Recommendations:
In MorphoBlueConnector::_getPositionTVL, replace:
supplyAmount - borrowAmount + (convertCToL(pos.collateral, params.oracle,

params.collateralToken) / 10**(collateralTokenDecimals) * 10**(loanTokenDecimals))

with:
(supplyAmount + convertCToL(pos.collateral, params.oracle, params.collateralToken)) -

borrowAmount

https://github.com/morpho-org/morpho-blue/blob/main/src/interfaces/IOracle.sol

[H-03] Invalid TVL calculation in
BalancerConnector::_getPositionTVL

Severity:
High

Description:
When calculating the TVL of a BalancerConnector position, the protocol wrongly
computes the TVL of the Balancer position by doing a series of multiplications and
divisions. The protocol should use the functions recommended in the Balancer docs,
https://docs.balancer.fi/concepts/advanced/valuing-bpt/valuing-bpt.html#weighted-pools.
This results in an inaccurate representation of the position’s TVL.

Proof of Concept:
function testZeroPositionTVL() public {

uint256[] memory amounts = new uint256[](4);

uint256[] memory amountsW = new uint256[](3);

uint256 USDCAmount = 10_000e6;

_dealWhale(USDC, address(connector), USDC_Whale, USDCAmount);

vm.startPrank(owner);

addRoutesToNoyaOracle(address(USDT), address(USDC), address(840));

connector.updateTokenInRegistry(USDC);

assertEq(accountingManager.TVL(), USDCAmount);

assertEq(IERC20(USDC).balanceOf(address(connector)), USDCAmount);

amounts[2] = USDCAmount;

amountsW[1] = USDCAmount;

connector.openPosition(vanillaUsdcDaiUsdtId, amounts, amountsW, 0, 0);

// TVL is 4449 wei

// Connector holds 0 USDC

// Connector holds 10k LP tokens - which should be translated to 10k USDC

assertEq(accountingManager.TVL(), 4449);

assertEq(IERC20(USDC).balanceOf(address(connector)), 0);

assertGt(connector.totalLpBalanceOf(vanillaUsdcDaiUsdtId), 9900e18);

}

Recommendations:

https://docs.balancer.fi/concepts/advanced/valuing-bpt/valuing-bpt.html#weighted-pools

In BalancerConnector::_getPositionTVL, replace the calculation logic with
Balancer’s recommendations, for example, for stable pools, it should be something
similar to:
(address poolAddress,) = IBalancerVault(balancerVault).getPool(

pool.poolId

);

return

((lpBalance * IBalancerPool(poolAddress).getRate()) / 1e36) *

10 ** IERC20Metadata(base).decimals();

7.3. MediumFindings

[M-01] getValueFromChainlinkFeed will result in stale
prices

Severity:
Medium

Description:
According to the updateChainlinkPriceAgeThreshold function, the minimum
possible chainlinkPriceAgeThreshold would be 1 hour. However, there are Chainlink
oracles that have a heartbeat that is less than an hour; these oracles are essential for
providing prices for the ERC20 tokens that should be supported by the protocol.
This was reported in the Code4rena contest
https://github.com/code-423n4/2024-04-noya-findings/issues/1501, however, the fix still
contains the same issue. As the introduced updateChainlinkPriceAgeThreshold,
has the same “1 hour check”, blocking maintainers from adding the correct heartbeat to
each oracle.
function updateChainlinkPriceAgeThreshold(address source, uint256

_chainlinkPriceAgeThreshold)

external

onlyMaintainer

{

if (_chainlinkPriceAgeThreshold <= 1 hours || _chainlinkPriceAgeThreshold >= 10 days) {

revert NoyaChainlinkOracle_INVALID_INPUT();

}

chainlinkPriceAgeThreshold[source] = _chainlinkPriceAgeThreshold;

emit ChainlinkPriceAgeThresholdUpdatedForAsset(source, _chainlinkPriceAgeThreshold);

}

Recommendations:
Refactor updateChainlinkPriceAgeThreshold’s condition to accommodate these
oracles’ heartbeats.

https://github.com/code-423n4/2024-04-noya-findings/issues/1501

7.4. Low Findings
[L-01] Withdrawal errors are not cleared after being handled

Severity:
Low

Description:
Errors are not being cleared in
WithdrawErrorHandler::handleWithdrawalErrors.

Recommendations:
Clear the error after handling it, add:
errors[errorId] = Error(address(0), address(0), 0, 0);

